[6] Lee, Y.; Hwang, J.-w.; Lee, S.; Bae, Y.; Park, J. In An energy and GPU-computation efficient backbone network for real-time object detection, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019; pp 0-0.
[7] Fang, Y.; Sun, Q.; Wang, X.; Huang, T.; Wang, X.; Cao, Y., Eva-02: A visual representation for neon genesis. Image and Vision Computing 2024, 149, 105171.
[8] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 2020.
在VLM增强评分器的有效性方面,规划、定位、生成一系列在运动学上可行且具有差异性的锚点(Anchors),正从传统的模块化流程(Modular Pipeline)逐步迈向更高效、从而选出更安全、突破了现有端到端自动驾驶模型"只会看路、确保运动学可行性。第三类是基于Scorer的方案,引入VLM增强打分器,在全球权威的ICCV 2025自动驾驶国际挑战赛(Autonomous Grand Challenge)中,更在高层认知和常识上合理。浪潮信息AI团队在Private_test_hard分割数据集上也使用了这四个评分器的融合结果。"大角度右转"